Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen.

نویسندگان

  • L Studer
  • M Csete
  • S H Lee
  • N Kabbani
  • J Walikonis
  • B Wold
  • R McKay
چکیده

Standard cell culture systems impose environmental oxygen (O(2)) levels of 20%, whereas actual tissue O(2) levels in both developing and adult brain are an order of magnitude lower. To address whether proliferation and differentiation of CNS precursors in vitro are influenced by the O(2) environment, we analyzed embryonic day 12 rat mesencephalic precursor cells in traditional cultures with 20% O(2) and in lowered O(2) (3 +/- 2%). Proliferation was promoted and apoptosis was reduced when cells were grown in lowered O(2), yielding greater numbers of precursors. The differentiation of precursor cells into neurons with specific neurotransmitter phenotypes was also significantly altered. The percentage of neurons of dopaminergic phenotype increased to 56% in lowered O(2) compared with 18% in 20% O(2). Together, the increases in total cell number and percentage of dopaminergic neurons resulted in a ninefold net increase in dopamine neuron yield. Differential gene expression analysis revealed more abundant messages for FGF8, engrailed-1, and erythropoietin in lowered O(2). Erythropoietin supplementation of 20% O(2) cultures partially mimicked increased dopaminergic differentiation characteristic of CNS precursors cultured in lowered O(2). These data demonstrate increased proliferation, reduced cell death, and enhanced dopamine neuron generation in lowered O(2), making this method an important advance in the ex vivo generation of specific neurons for brain repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of neural stem cells expanded in lowered oxygen and the potential role of hypoxia-inducible factor-1Alpha.

It has recently been reported that hypoxia promotes the survival and proliferation of neural stem cells (NSCs). In the present study, we examine the differentiation ability of neural precursors expanded under lowered oxygen conditions, and the potential role of hypoxia-inducible factor (HIF)-1alphain vitro, which is the key molecule in response to lowered oxygen. The NSCs were cultured in a 3% ...

متن کامل

Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes.

Human neural precursor proliferation and potency is limited by senescence and loss of oligodendrocyte potential. We found that in vitro expansion of human postnatal brain CD133(+) nestin(+) precursors is enhanced at 5% oxygen, while raising oxygen tension to 20% depletes precursors and promotes astrocyte differentiation even in the presence of mitogens. Higher cell densities yielded more astroc...

متن کامل

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

Expression and Functional Roles of Angiopoietin-2 in Skeletal Muscles

BACKGROUND Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the...

متن کامل

Effect of Hesperetin on the level of reactive oxygen species (ROS) in gastric cancer stem cells: Short Communication

Intracellular reactive oxygen species (ROS) play an important role in cancer stem cell (CSC) function. Hesperetin (Hst) is a flavonoid that has been shown to affect cellular ROS level. The goal of this study was to investigate the effect of Hst on the level of ROS in gastric CSCs (GCSCs). MTT assay was used to evaluate cell survival. Cellular ROS level was measured using 2′,7′-dichlorofluoresci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 19  شماره 

صفحات  -

تاریخ انتشار 2000